Search results for "electronic topological"
showing 3 items of 3 documents
Structural and electrical study of the topological insulator SnBi2Te4 at high pressures
2016
We report high-pressure X-ray diffraction and electrical measurements of the topological insulator SnBi2Te4 at room temperature. The pressure dependence of the structural properties of the most stable phase of SnBi2Te4 at ambient conditions (trigonal phase) have been experimentally determined and compared with results of our ab initio calculations. Furthermore, a comparison of SnBi2Te4 with the parent compound Bi2Te3 shows that the central TeSnTe trilayer, which substitutes the Te layer at the center of the TeBiTeBiTe layers of Bi2Te3, plays a minor role in the compression of SnBi2Te4. Similar to Bi2Te3, our resistance measurements and electronic band structure simulations in SnBi2Te4 at hi…
High-pressure/high-temperature phase diagram of zinc
2018
The phase diagram of zinc (Zn) has been explored up to 140 GPa and 6000K, by combining optical observations, x-ray diffraction, and ab initio calculations. In the pressure range covered by this study, Zn is found to retain a hexagonal close-packed (hcp) crystal symmetry up to the melting temperature. The known decrease of the axial ratio (c/a) of the hcp phase of Zn under compression is observed in x-ray diffraction experiments from 300K up to the melting temperature. The pressure at which c/a reaches root 3 (approximate to 10GPa) is slightly affected by temperature. When this axial ratio is reached, we observed that single crystals of Zn, formed at high temperature, break into multiple pol…
Characterization and Decomposition of the Natural van der Waals SnSb2Te4 under Compression
2020
[EN] High pressure X-ray diffraction, Raman scattering, and electrical measurements, together with theoretical calculations, which include the analysis of the topological electron density and electronic localization function, evidence the presence of an isostructural phase transition around 2 GPa, a Fermi resonance around 3.5 GPa, and a pressure-induced decomposition of SnSb2Te4 into the high-pressure phases of its parent binary compounds (alpha-Sb2Te3 and SnTe) above 7 GPa. The internal polyhedral compressibility, the behavior of the Raman-active modes, the electrical behavior, and the nature of its different bonds under compression have been discussed and compared with their parent binary…